Digital Micrography

Ron Maharik Mikhail Bessmeltsev University of British Columbia Alla Sheffer University of British Columbia INRIA Rhône-Alpes Ariel Shamir The Interdisciplinary Center Nathan Carr Adobe Systems Incorporated

"Micrography"?

Calligrams

Micrograms

Calligraphic Packing by Jie Xu Craig S. Kaplan 2007

6 n הבתלאתכבה אתת

Readable Text

Forcing alignment to boundaries

Forcing alignment to boundaries

No orientation

Forcing alignment to boundaries

No orientation

High Curvature

Forcing alignment to boundaries

With smart alignment constraints

Algorithm pipeline

Algorithm pipeline

PARAMETERIZATION BY ARC LENGTH

http://www.planetclegg.com/projects/WarpingTextToSplines.html

Constant-speed parameterization

D

Boundary condition

Orthogonal vs Aligned

$$w_{ij} = F_a(a_{ij}) \cdot F_d(d_{ij})$$

$$F_a(a_{ij}) = \tanh(\frac{4}{\pi}(|\frac{\pi}{2} - a_{ij}| - \frac{\pi}{4})) \qquad \qquad F_d(d_{ij}) = e^{-\tilde{d}_{ij}^2/\sigma_d^2}$$

Each colored vertice has an label weight going from 0 (red) to 1 (green)

Where : a_{ij} = angle between normal of vertices *i*,*j*

 d_{ii} = distance between vertices *i*,*j*

 σ_{d} = 10

Boundary condition

Orthogonal vs Aligned

Vertice attraction weights

$$\alpha_i = F_a^+(a_i) \cdot F_d^+(d_i)$$

$$F_a^+ = max(0, F(a_i))$$
 $\sigma_d = 20$

SSS.

Each colored vertice has an label weight going from 0 (red) to 1 (green)

Boundary condition

Orthogonal vs Aligned

Each colored vertice has an label weight going from 0 (red) to 1 (green)

$$\min \sum_{ij} w_{ij} (l_i - l_j)^2 + \omega \sum_{i} \alpha_i (1 - l_i)$$

subj. to $0 \le l_i \le 1$

can be negative

С

D

- 1. Triangulate shape
- 2. Compute vector field
- 3. Trace text lines

Vector field

Rotational Symmetry Field Design on Surfaces

Jonathan Palacios* Oregon State University

Eugene Zhang* Oregon State University

Inside?

Inside?

- Smoothest interpolation of boundary values
- Laplace equation with Dirichlet boundary conditions
- Discretization?
- Representation?

$$\Delta u = 0$$
$$u\Big|_{\partial\Omega} = v$$

Applications_of_Vector_Fields.pdf

Laplacian smoothing!

(a) before smoothing

(b) after smoothing

Implementation

Rendering points on the screen

SVG files

bezierToVertex(5,p,curves,edges,path->closed);

double y = pow((1.0-t),3) * p[1] + 3.0 * t *pow((1.0-t),2) * p[3] + 3.0*pow(t,2)*(1.0-t) * p[5] + pow(t,3) * p[7];

Rendering points on the screen

1 point per curve

5 points per curve

10 points per curve

Calculating edge weights

negative : red

positive : green

$$w_{ij} = F_a(a_{ij}) \cdot F_d(d_{ij})$$

$$F_a(a_{ij}) = \tanh(\frac{4}{\pi}(|\frac{\pi}{2} - a_{ij}| - \frac{\pi}{4})) \qquad \qquad F_d(d_{ij}) = e^{-\tilde{d}_{ij}^2/\sigma_d^2}$$

Calculating vertex attraction weights

$$\alpha_i = F_a^+(a_i) \cdot F_d^+(d_i)$$

$$F_a^+ = max(0, F(a_i)) \qquad \qquad \sigma_d = 20$$

igl::ray_box_intersect(V.row(i),Vnormal,box)

Find local minimum

$$\min \sum_{ij} w_{ij} (l_i - l_j)^2 + \omega \sum_i \alpha_i (1 - l_i)$$

subj. to $0 \le l_i \le 1$

```
auto W = calculateEdgeWeights(V,E,VtoEnormals);
auto alpha = calculateVertexAttraction(V,VtoEnormals);
auto label = Eigen::VectorXd{V.rows()}.setConstant(0.5); //final labeling, starts at 0.5
double Wsum = 0.0;
for(int i=0;i<E.rows();i++)</pre>
  auto p1 = E.row(i).coeff(0,0);
  auto p2 = E.row(i).coeff(0,1);
  Wsum += W[i] * pow(label[p1]-label[p2],2.0);
double alphasum = 0.0;
//vertex weight sum
for(int i=0;i<V.rows();i++)</pre>
  alphasum += alpha[i] * (1-label[i],
//minimise here
auto total = Wsum + alphasum;
```

Triangulation

Generate Steiner points

Perform Delaunay triangulation

riangle

A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.

Jonathan Richard Shewchuk Computer Science Division

Computer Science Division University of California at Berkeley Berkeley, California 94720-1776 **jrs@cs.berkeley.edu**

Exploring vector fields with Libigl

Conclusion?

